Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
1.
Front Pharmacol ; 15: 1329636, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38323081

RESUMO

Albumin is derived from human or animal blood, and its ability to bind to a large number of endogenous or exogenous biomolecules makes it an ideal drug carrier. As a result, albumin-based drug delivery systems are increasingly being studied. With these in mind, detailed studies of the transport mechanism of albumin-based drug carriers are particularly important. As albumin receptors, glycoprotein 60 (GP60) and secreted protein acidic and rich in cysteine (SPARC) play a crucial role in the delivery of albumin-based drug carriers. GP60 is expressed on vascular endothelial cells and enables albumin to cross the vascular endothelial cell layer, and SPARC is overexpressed in many types of tumor cells, while it is minimally expressed in normal tissue cells. Thus, this review supplements existing articles by detailing the research history and specific biological functions of GP60 or SPARC and research advances in the delivery of antitumor drugs using albumin as a carrier. Meanwhile, the deficiencies and future perspectives in the study of the interaction of albumin with GP60 and SPARC are also pointed out.

2.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167098, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38412927

RESUMO

Recent research has unveiled fascinating insights into the intricate mechanisms governing tumor evolution. These studies have illuminated how tumors adapt and proliferate by exploiting various factors, including immune evasion, resistance to therapeutic drugs, genetic mutations, and their ability to adapt to different environments. Furthermore, investigations into tumor heterogeneity and chromosomal aberrations have revealed the profound complexity that underlies the evolution of cancer. Emerging findings have also underscored the role of viral influences in the development and progression of cancer, introducing an additional layer of complexity to the field of oncology. Tumor evolution is a dynamic and complex process influenced by various factors, including immune evasion, drug resistance, tumor heterogeneity, and viral influences. Understanding these elements is indispensable for developing more effective treatments and advancing cancer therapies. A holistic approach to studying and addressing tumor evolution is crucial in the ongoing battle against cancer. The main goal of this comprehensive review is to explore the intricate relationship between tumor evolution and critical aspects of cancer biology. By delving into this complex interplay, we aim to provide a profound understanding of how tumors evolve, adapt, and respond to treatment strategies. This review underscores the pivotal importance of comprehending tumor evolution in shaping effective approaches to cancer treatment.


Assuntos
Neoplasias , Evasão Tumoral , Humanos , Evasão Tumoral/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Mutação , Oncologia , Resistência a Medicamentos
3.
Adv Mater ; 36(14): e2310379, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38183310

RESUMO

Antiferromagnets constitute promising contender materials for next-generation spintronic devices with superior stability, scalability, and dynamics. Nevertheless, the perception of well-established ferromagnetic spintronics underpinned by spontaneous magnetization seemed to indicate the inadequacy of antiferromagnets for spintronics-their compensated magnetization has been perceived to result in uncontrollable antiferromagnetic order and subtle magnetoelectronic responses. However, remarkable advancements have been achieved in antiferromagnetic spintronics in recent years, with consecutive unanticipated discoveries substantiating the feasibility of antiferromagnet-centered spintronic devices. It is emphasized that, distinct from ferromagnets, the richness in complex antiferromagnetic crystal structures is the unique and essential virtue of antiferromagnets that can open up their endless possibilities of novel phenomena and functionality for spintronics. In this Perspective, the recent progress in antiferromagnetic spintronics is reviewed, with a particular focus on that based on several kinds of antiferromagnets with special antiferromagnetic crystal structures. The latest developments in efficiently manipulating antiferromagnetic order, exploring novel antiferromagnetic physical responses, and demonstrating prototype antiferromagnetic spintronic devices are discussed. An outlook on future research directions is also provided. It is hoped that this Perspective can serve as guidance for readers who are interested in this field and encourage unprecedented studies on antiferromagnetic spintronic materials, phenomena, and devices.

4.
Nano Lett ; 24(2): 584-591, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38165127

RESUMO

Cu2S likely plays an important role in the sharp resistivity transition of LK-99. Nevertheless, this immediately arouses an intriguing question of whether the extraordinary room-temperature colossal magnetoresistance in the initial reports, which has been less focused, originates from Cu2S as well. To resolve this issue, we have systematically investigated the electrical transport and magnetotransport properties of near-stoichiometric Cu2S pellets and thin films. Neither Cu2S nor LK-99 containing Cu2S in this study was found to exhibit the remarkable magnetoresistance effect implied by Lee et al. This implies that Cu2S could not account for all of the intriguing transport properties of the initially reported LK-99, and the initially reported LK-99 samples might contain magnetic impurities. Moreover, based on the crystal-structure-sensitive electrical properties of Cu2S, we have constructed a piezoelectric-strain-controlled device and obtained a giant and reversible resistance modulation of 2 orders of magnitude at room temperature, yielding a huge gauge factor of 160,000.

5.
Crit Rev Oncol Hematol ; 193: 104231, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38070841

RESUMO

Natural killer (NK) cells are vital components of the human immune system, acting as innate lymphocytes and playing a crucial role in immune surveillance. Their unique ability to independently eliminate target cells without antigen contact or antibodies has sparked interest in immunological research. This review examines recent NK cell developments and applications, encompassing immune functions, interactions with target cells, genetic engineering techniques, pharmaceutical interventions, and implications in cancers. Insights into NK cell regulation emerge, with a focus on promising genetic engineering like CAR-engineered NK cells, enhancing specificity against tumors. Immune checkpoint inhibitors also enhance NK cells' potential in cancer therapy. Nanotechnology's emergence as a tool for targeted drug delivery to improve NK cell therapies is explored. In conclusion, NK cells are pivotal in immunity, holding exciting potential in cancer immunotherapy. Ongoing research promises novel therapeutic strategies, advancing immunotherapy and medical interventions.


Assuntos
Células Matadoras Naturais , Neoplasias , Humanos , Células Matadoras Naturais/patologia , Imunoterapia/métodos , Neoplasias/genética , Neoplasias/terapia , Engenharia Genética , Nanotecnologia
6.
ChemSusChem ; 17(2): e202300985, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37698086

RESUMO

A series of cross-linked AEMs (c-DQPPO/PVA) are synthesized by using rigid polyphenylene oxide and flexible poly(vinyl alcohol) as the backbones. Dual cations are grafted on the PPO backbone to improve the ion exchange capacity (IEC), while glutaraldehyde is introduced to enhance compatibility and reduce swelling ratio of AEMs. In addition to the enhanced mechanical properties resulting from the rigid-flexible cross-linked network, c-DQPPO/PVA AEMs also exhibit impressive ionic conductivity, which can be attributed to their high IEC, good hydrophilicity of PVA, and well-defined micro-morphology. Additionally, due to confined dimension behavior and ordered micro-morphology, c-DQPPO/PVA AEMs demonstrate excellent chemical stability. Specifically, c-DQPPO/PVA-7.5 exhibits a wet-state tensile strength of 12.5 MPa and an elongation at break of 53.0 % at 25 °C. Its OH- conductivity and swelling degree at 80 °C are measured to be 125.7 mS cm-1 and 8.2 %, respectively, with an IEC of 3.05 mmol g-1 . After 30 days in a 1 M NaOH solution at 80 °C, c-DQPPO/PVA-7.5 experiences degradation rates of 12.8 % for tensile strength, 27.4 % for elongation at break, 14.7 % for IEC, and 19.2 % for ion conductivity. With its excellent properties, c-DQPPO/PVA-7.5 exhibits a peak power density of 0.751 W cm-2 at 60 °C in an H2 -O2 fuel cell.

7.
Front Chem ; 11: 1302198, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38156023

RESUMO

Introduction: Dairy products are loved by people because of their high nutritional value, but they have also become the most ideal breeding places for microorganisms. Some dairy packaging has the problem of lax sealing, resulting in products susceptible to contamination and deterioration. The harmful microorganisms and bacteria contained in them will pose a serious threat to people's health. Therefore, a good antibacterial protection is very important for dairy products. The purpose of this paper is to study the preparation and reverse recycling logistics of a new type of nano-filled antibacterial layer packaging film for dairy products. Methods: A new type of nano-filled antibacterial layer packaging film is prepared by extrusion casting method, and its mechanical properties and antibacterial properties are analyzed. Results: The experimental results in this article show that the prepared new nano-filled antibacterial layer packaging film has lower light transmittance and water vapor transmission rate, and has obvious antibacterial properties against Staphylococcus aureus and Escherichia coli, and has good barrier properties. Discussion: The antibacterial rate of the bacteria in the petri dish is as high as 99.97% after being placed for 120 days, and the antibacterial performance can be enhanced by the ratio of glycerol and starch content, and the new nano-filled antibacterial film prepared is degradable Sex, can be better recycled.

8.
Int J Mol Sci ; 24(24)2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38139398

RESUMO

This study reports the whole-genome sequence of Lactiplantibacillus plantarum cqf-43 isolated from healthy sow feces. Based on genomic analysis, we performed a comprehensive safety assessment of strain cqf-43, using both in vitro and in vivo experiments, and explored its probiotic potential. The total genome length measures 3,169,201 bp, boasting a GC content of 44.59%. Through phylogenetic analyses, leveraging both 16S rRNA gene and whole-genome sequences, we confidently categorize strain cqf-43 as a member of Lactiplantibacillus. Genome annotation using Prokka unveiled a total of 3141 genes, encompassing 2990 protein-coding sequences, 71 tRNAs, 16 rRNAs, and 1 tmRNA. Functional annotations derived from COG and KEGG databases highlighted a significant abundance of genes related to metabolism, with a notable emphasis on carbohydrate utilization. The genome also revealed the presence of prophage regions and CRISPR-Cas regions while lacking virulence and toxin genes. Screening for antibiotic resistance genes via the CARD database yielded no detectable transferable resistance genes, effectively eliminating the potential for harmful gene transfer. It is worth highlighting that the virulence factors identified via the VFDB database primarily contribute to bolstering pathogen resilience in hostile environments. This characteristic is particularly advantageous for probiotics. Furthermore, the genome is devoid of menacing genes such as hemolysin, gelatinase, and biogenic amine-producing genes. Our investigation also unveiled the presence of three unannotated secondary metabolite biosynthetic gene clusters, as detected by the online tool antiSMASH, suggesting a great deal of unknown potential for this strain. Rigorous in vitro experiments confirmed tolerance of strain cqf-43 in the intestinal environment, its antimicrobial efficacy, sensitivity to antibiotics, absence of hemolysis and gelatinase activity, and its inability to produce biogenic amines. In addition, a 28-day oral toxicity test showed that the strain cqf-43 did not pose a health hazard in mice, further establishing it as a safe strain.


Assuntos
Genoma Bacteriano , Probióticos , Animais , Feminino , Suínos , Camundongos , RNA Ribossômico 16S , Filogenia , Antibacterianos , Gelatinases/genética , Análise de Sequência
9.
Heliyon ; 9(11): e21327, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027570

RESUMO

Extrachromosomal DNA (ecDNA) is a special class of circular DNA in eukaryotes, which is independent of conventional chromosomes. These circular molecules play important roles in biology, especially in cancer biology. The emergence of sequencing technologies such as CCDA-seq and Amplicon Architect has led to a progressive unraveling of the mystery of ecDNA. Consequently, insights into its function and potential applications have begun to surface. Among these studies, the most noteworthy research pertains to cancer-related investigations into ecDNA. Numerous studies have underscored the significance of ecDNA in the pathogenesis of cancer and its role in accelerating cancer evolution. This review provides an overview of the source, structure, and function of ecDNA, while compiling recent advancements in ecDNA in the field of cancer. Nonetheless, further research is imperative to determine its effectiveness and specificity as a biomarker for early cancer detection.

10.
Materials (Basel) ; 16(21)2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37959633

RESUMO

A novel Al-Mg-Si aluminum alloy with the addition of the micro-alloying element Er and Zr that was promptly quenched after extrusion has been studied. The solid solution and aging treatment of the novel alloy are studied by observing the microstructure, mechanical properties, and strengthening mechanism. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques are employed to examine the changes in the microstructure resulting from various solid solution treatments and aging treatments. The best strengthening effect can be achieved when the solubility of the MgSi phase and precipitate ß″ (Mg2Si phase) is at their maximum. The addition of Er and Zr elements promotes the precipitation of the ß″ phase and makes the b″ phase more finely dispersed. The aging strengthening of alloys is a comprehensive effect of the dislocation cutting mechanism and bypass mechanism, the joint effect of diffusion strengthening of Al3(Er,Zr) particles and the addition of Er and Zr elements promoting the precipitation strengthening of ß″ phases. In this paper, by adding Er and Zr elements and exploring the optimal heat treatment system, the yield strength of the alloy reaches 437 MPa and the tensile strength reaches 453 MPa after solid solution treatment at 565 °C/30 min and aging at 175 °C/10 h.

11.
Genes (Basel) ; 14(11)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-38002938

RESUMO

PANoptosis is a newly recognized inflammatory pathway for programmed cell death (PCD). It participates in regulating the internal environment, homeostasis, and disease process in various complex ways and plays a crucial role in tumor development, but its mechanism of action is still unclear. In this study, we comprehensively analyzed the expression of 14 PANoptosis-related genes (PANRGs) in 28 types of tumors. Most PANRGs are upregulated in tumors, including Z-DNA binding protein 1 (ZBP1), nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain-containing 3 (NLRP3), caspase (CASP) 1, CASP6, CASP8, PYCARD, FADD, MAP3K7, RNF31, and RBCK1. PANRGs are highly expressed in GBM, LGG, and PAAD, while their levels in ACC are much lower than those in normal tissues. We found that both the CNV and SNV gene sets in BLCA are closely related to survival performance. Subsequently, we conducted clustering and LASSO analysis on each tumor and found that the inhibitory and the stimulating immune checkpoints positively correlate with ZBP1, NLRP3, CASP1, CASP8, and TNFAIP3. The immune infiltration results indicated that KIRC is associated with most infiltrating immune cells. According to the six tumor dryness indicators, PANRGs in LGG show the strongest tumor dryness but have a negative correlation with RNAss. In KIRC, LIHC, and TGCT, most PANRGs play an important role in tumor heterogeneity. Additionally, we analyzed the linear relationship between PANRGs and miRNA and found that MAP3K7 correlates to many miRNAs in most cancers. Finally, we predicted the possible drugs for targeted therapy of the cancers. These data greatly enhance our understanding of the components of cancer and may lead to the discovery of new biomarkers for predicting immunotherapy response and improving the prognosis of cancer patients.


Assuntos
MicroRNAs , Neoplasias , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Prognóstico , Imunoterapia , MicroRNAs/genética , Neoplasias/genética , Neoplasias/terapia
12.
Environ Sci Technol ; 57(44): 16884-16894, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37857299

RESUMO

Dissolved organic matter (DOM) is critical for soil carbon sequestration in terrestrial ecosystems. DOM molecular composition varies with soil depth. However, the spatial heterogeneity of depth-dependent DOM in response to climate warming remains unclear, especially in alpine ecosystems. In this study, the DOM of alpine meadow soil samples was characterized comprehensively by using spectroscopy and mass spectrometry, and open-top chambers (OTCs) were employed to simulate warming. It was found that climate warming had the greatest impact on the upper layer (0-30 cm), followed by the lower layer (60-80 cm), while the middle layer (30-60 cm) was the most stable among the three soil layers. The reasons for the obvious changes in DOM in the upper and lower layers of soil were further explained based on biotic and abiotic factors. Specifically, soil nutrients (NH4+-N, NO3--N, TC, and TP) affected the molecular composition of DOM in layer L1 (0-15 cm), while pH affected layer L5 (60-80 cm). Gemmatimonadetes, Proteobacteria, and Actinobacteria played important roles in the composition of DOM in the L5 layer (60-80 cm), while the dominant fungal groups affecting the DOM composition increased in the L1 layer (0-15 cm) under warming. In summary, this research has contributed to a deeper understanding of depth-dependent changes in DOM molecular composition in alpine ecosystems.


Assuntos
Ecossistema , Solo , Solo/química , Tibet , Matéria Orgânica Dissolvida , Clima , Bactérias , Carbono
13.
J Cancer Res Clin Oncol ; 149(19): 17199-17213, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37789154

RESUMO

BACKGROUND: Lung adenocarcinoma (LUAD) is the most prevalent subtype of lung cancer, and comprehending its molecular mechanisms is pivotal for advancing treatment efficacy. This study aims to explore the prognostic and functional significance of base excision repair (BER)-related long non-coding RNAs (BERLncs) in LUAD. METHODS: A risk score model for BERLncs was developed using the least absolute shrinkage and selection operator regression and Cox regression analysis. Model validation and prognostic evaluation were performed using Kaplan-Meier and receiver-operating characteristic curve analyses. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were conducted to elucidate the potential biological functions of BERLncs. Comparative analyses were carried out to investigate disparities in tumor mutation burden (TMB), immune infiltration, tumor immune dysfunction and exclusion (TIDE) score, chemosensitivity, and immune checkpoint gene expression between the two risk groups. RESULTS: A predictive risk score model comprising 19 BERLncs was successfully developed. Patients were divided into high-risk and low-risk groups according to the median risk score. The high-risk subgroup exhibited significantly inferior overall survival. Functional enrichment analysis revealed pathways associated with lung cancer development, notably the neuroactive ligand-receptor interaction pathway. High-risk patients demonstrated elevated TMB, diminished TIDE scores, and an immunosuppressive tumor microenvironment, while low-risk patients displayed potential benefits from immunotherapy. Additionally, the risk model identified potential anticancer agents. CONCLUSION: The risk score model based on BERLncs shows promise as a prognostic biomarker for LUAD patients, providing valuable insights for clinical decision-making, therapeutic strategies, and understanding of underlying biological mechanisms.


Assuntos
Adenocarcinoma , Neoplasias Pulmonares , RNA Longo não Codificante , Humanos , Prognóstico , RNA Longo não Codificante/genética , Biomarcadores , Imunomodulação , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Reparo do DNA , Pulmão , Microambiente Tumoral/genética
14.
Int J Genomics ; 2023: 8814046, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37779880

RESUMO

Nonsyndromic cleft lip with or without cleft palate (NSCL/P) accounts for 70% of the total number of patients with cleft lip with or without cleft palate (CL/P) and is the most common type of congenital deformity of the craniomaxillofacial region. In this study, whole exome sequencing (WES) and Sanger sequencing were performed on affected members of a Han Chinese family, and a missense variant in the platelet-derived growth factor C (PDGFC) gene (NM_016205: c.G93T: p.Q31H) was identified to be associated with NSCL/P. Bioinformatic studies demonstrated that the amino acid corresponding to this variation is highly conserved in many mammals and leads to a glutamine-to-histidine substitution in an evolutionarily conserved DNA-binding domain. It was found that the expression of PDGFC was significantly decreased in the dental pulp stem cells (DPSCs) of NSCL/P cases, compared to the controls, and that the variant (NM_016205: c.G93T) reduced the expression of PDGFC. In addition, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that Pdgfc deficiency disrupted NSCL/P-related signaling pathways such as the MAPK signaling pathway and cell adhesion molecules. In conclusion, our study identified a missense variant (NM_016205: c.G93T) in exon 1 of PDGFC potentially associated with susceptibility to NSCL/P.

15.
Pathogens ; 12(10)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37887717

RESUMO

To explore and profile the level of cytokines in the sera of patients infected with Schistosoma japonicum to explore the helper T-cell response of patients either at the chronic or advanced stage of the disease. We randomly selected 58 subjects from several areas endemic for schistosomiasis japonica in China and collected serum samples to be tested for 18 different cytokines secreted by (1) Th1/Th2 cells (GM-CSF, IFN-γ, IL-1ß, IL-2, IL-4, IL-5, IL-6, IL-12p70, IL-10, IL-13, IL-18 and TNF-α) and (2) Th9/Th17/Th22/Treg cells (IL-9, IL-17A, IL-21, IL-22, IL-23 and IL-27). The Th1/Th2 cytokines in chronic patients were not significantly different from those in healthy people, while patients with advanced schistosomiasis had higher levels of IL-2, IL-23 and IL-27 and lower levels of IL-18 and IFN-γ. With respect to the Th9/Th17/Th22/Treg cell cytokines, there were higher levels of IL-23. Thus, a limited variation of the cytokine response between the three patient groups was evident, but only in those with advanced infection, while there was no difference between chronic schistosomiasis infection and healthy subjects in this respect. The cytokine expression should be followed in patients with advanced schistosomiasis who show a cytokine pattern of a weakened Th1 cell response and an increased Th17 response.

16.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37895911

RESUMO

Rheumatoid arthritis (RA) is an inflammatory condition that causes severe cartilage degradation and synovial damage in the joints with multiple systemic implications. Previous studies have revealed that fibroblast-like synoviocytes (FLSs) play a pivotal role in the pathogenesis of RA. The appropriate regulation of FLS function is an efficient approach for the treatment of this disease. In the present study, we explored the effects of methyl canthin-6-one-2-carboxylate (Cant), a novel canthin-6-one alkaloid, on the function of FLSs. Our data showed that exposure to Cant significantly suppressed RA-FLS migration and invasion properties in a dose-dependent manner. Meanwhile, pre-treatment with Cant also had an inhibitory effect on the release of several pro-inflammatory cytokines, including IL-6 and IL-1ß, as well as the production of MMP1 and MMP3, which are important mediators of FLS invasion. In further mechanistic studies, we found that Cant had an inhibitory effect on the Hippo/YAP signaling pathway. Treatment with Cant suppressed YAP expression and phosphorylation on serine 127 and serine 397 while enhancing LATS1 and MST1 levels, both being important upstream regulators of YAP. Moreover, YAP-specific siRNA or YAP inhibition significantly inhibited wound healing as well as the migration and invasion rate of FLS cells, an impact similar to Cant treatment. Meanwhile, the over-expression of YAP significantly reversed the Cant-induced decline in RA-FLS cell migration and invasion, indicating that YAP was required in the inhibitory effect of Cant on the migration and invasion of RA-FLS cells. Additionally, supplementation of MMP1, but not MMP3, in culture supernatants significantly reversed the inhibitory effect of Cant on RA-FLS cell invasion. Our data collectively demonstrated that Cant may suppress RA-FLS migration and invasion by inhibiting the production of MMP1 via inhibiting the YAP signaling pathway, suggesting a potential of Cant for the further development of anti-RA drugs.

17.
Biomed Pharmacother ; 168: 115730, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37864891

RESUMO

Previous investigations have unraveled an array of cellular demise modalities, encompassing apoptosis, necrosis, pyroptosis, iron death, and several others. These diverse pathways of cell death have been harnessed as therapeutic strategies for eradicating tumor cells. Recent scientific inquiries have unveiled a novel mode of cell death, namely copper death, which is contingent upon intracellular copper levels. Diverging from conventional cell death mechanisms, copper death exhibits a heightened reliance on mitochondrial respiration, specifically the tricarboxylic acid (TCA) cycle. Tumor cells exhibit distinctive metabolic profiles and an elevated copper content compared to their normal counterparts. The emergence of copper death presents a tantalizing prospect for targeted therapies in the realm of cancer treatment. Thus, the primary objective of this review is to introduce the proteins and intricate mechanisms underlying copper death, while comprehensively summarizing the extensive body of knowledge concerning its ramifications across diverse tumor types. The insights garnered from this comprehensive synthesis will serve as an invaluable reference for driving the development of tailor-made therapeutic interventions for tumors.


Assuntos
Cobre , Neoplasias , Humanos , Cobre/metabolismo , Apoptose , Necrose/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Mitocôndrias/metabolismo
18.
J Inflamm Res ; 16: 3799-3809, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37663758

RESUMO

Background: Oral squamous cell carcinoma (OSCC) is the most common head and neck malignancy with a high mortality rate and poor prognosis. The exploration and understanding of biomarkers will help to further improve the diagnosis and treatment of OSCC. Methods: Tumor tissue samples from 319 OSCC patients were retrospectively collected, along with their clinical information. In combination with bioinformatics tools and multiplex immunohistochemistry (mIHC) analyses, we evaluated NUP62CL protein expression and its relationship to tumor-infiltrating immune cells (TIICs) and immune checkpoints in the tumor microenvironment (TME), as well as its association with clinical features and prognosis of OSCC. Results: We identified high-NUP62CL expression in OSCC tissues, and high-NUP62CL protein expression was associated with large tumor size, advanced clinical stage and poor prognosis. In addition, NUP62CL protein expression was positively associated with the abundance of CD3+CD4+ T cells (P<0.01), CD3+CD8+ T cells (P<0.01), CD56+ NK cells (P<0.05), CD68+CD86+ macrophages (P<0.01) and CD68+CD163+ macrophages (P<0.01), as well as the immune checkpoints, including PD-1 (P<0.001), PD-L1 (P<0.001), and CTLA-4 (P<0.001) protein expression. Conclusion: In conclusion, NUP62CL could be an effective prognostic and immunological biomarker for OSCC patients.

19.
Medicine (Baltimore) ; 102(35): e34843, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37657041

RESUMO

Ophiocordyceps sinensis is a precious Chinese traditional herb with a long medicinal history. This study used UPLC-MS metabolomics to explore and compare the metabolic profiles of the stroma (OSBSz), sclerotium (OSBSh), and mycelium (OSBS) of O sinensis to analyze their differential metabolites and identified potential active components. Then combined with network pharmacology and molecular docking to explore the mechanism of differential metabolites with anti-influenza properties. The results indicate that the stroma, sclerotium, and mycelium showed significant differences in metabolites. The key pathways for differential metabolites were butanoate metabolism, thiamin metabolism, alanine, aspartate and glutamate metabolism, citrate cycle, and arginine biosynthesis. Protein-protein interaction analysis identified potential targets, including SRC, RHOA, HSP90AA1, VEGFA, ITGB1, PRKCA, and ITGA1, and the key protective pathways in-volved PI3K-Akt, HIF-1, influenza A, and Coronavirus disease 2019. The molecular docking results showed that the core metabolite D-(-)-glutamine has high binding affinity with SRC, RHOA, and EGFR, re-flecting the multi-component and multi-target network system of O sinensis. In short, the combination of metabonomics, network pharmacology and macromolecular docking technology provides a new way to explore the anti-influenza research of O sinensis. This is undoubtedly an important theoretical support for the clinical application of O sinensis in the future.


Assuntos
COVID-19 , Cordyceps , Humanos , Farmacologia em Rede , Cromatografia Líquida , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Espectrometria de Massas em Tandem , Metabolômica
20.
Autoimmunity ; 56(1): 2250102, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37599561

RESUMO

Infection by the Schistosoma japonicum can result in acute, chronic and late-stage manifestations. The latter often presents with severe organ failures and premature death. Importantly, infection can also produce autoimmune phenomena reflected by the development of autoantibodies. We wished to explore and profile the presence of autoantibodies in sera of patients with different stages of S. japonicum infection with the added aim of providing a reference assisting diagnosis. Blood samples from 55 patients with chronic and 20 patients with late-stage schistosomiasis japonica together, with a control group of 50 healthy people were randomly investigated against a microarray of 121 different autoantigens. In addition, the frequency of antibodies against Schistosoma egg antigen (SEA) was examined. In the sera from patients with chronic schistosomiasis japonica, 14 different highly expressed autoantibodies were detected, while patients with late-stage schistosomiasis were found to express as many as 43 autoantibody specificities together with a significantly higher frequency of antibodies against SEA compared to the control group. The findings presented suggest that autoantibody-based classification of schistosomiasis japonica represents a promising approach for the elucidation of subtypes of the disease. This approach may reflect differential disease mechanisms, which could ultimately lead to better treatment.


Assuntos
Autoanticorpos , Esquistossomose Japônica , Humanos , Esquistossomose Japônica/diagnóstico , Autoantígenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA